Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
arxiv; 2023.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2302.02488v2

ABSTRACT

Recurrent COVID-19 outbreaks have placed immense strain on the hospital system in Quebec. We develop a Bayesian three-state coupled Markov switching model to analyze COVID-19 outbreaks across Quebec based on admissions in the 30 largest hospitals. Within each catchment area, we assume the existence of three states for the disease: absence, a new state meant to account for many zeroes in some of the smaller areas, endemic and outbreak. Then we assume the disease switches between the three states in each area through a series of coupled nonhomogeneous hidden Markov chains. Unlike previous approaches, the transition probabilities may depend on covariates and the occurrence of outbreaks in neighboring areas, to account for geographical outbreak spread. Additionally, to prevent rapid switching between endemic and outbreak periods we introduce clone states into the model which enforce minimum endemic and outbreak durations. We make some interesting findings, such as that mobility in retail and recreation venues had a positive association with the development and persistence of new COVID-19 outbreaks in Quebec. Based on model comparison our contributions show promise in improving state estimation retrospectively and in real-time, especially when there are smaller areas and highly spatially synchronized outbreaks. Furthermore, our approach offers new and interesting epidemiological interpretations, such as being able to estimate the effect of covariates on disease extinction.


Subject(s)
COVID-19
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.10.18.22281192

ABSTRACT

Background: In Canada, all provinces implemented vaccine passports in 2021 to increase vaccine uptake and reduce transmission in non-essential indoor spaces. We evaluate the impact of vaccine passport policies on first-dose COVID-19 vaccination coverage by age, area-level income and proportion racialized. Methods: We performed interrupted time-series analyses using vaccine registry data linked to census information in Quebec and Ontario (20.5 million people [≥]12 years; unit of analysis: dissemination area). We fit negative binomial regressions to weekly first-dose vaccination, using a natural spline to capture pre-announcement trends, adjusting for baseline vaccination coverage (start: July 3rd; end: October 23rd Quebec, November 13th Ontario). We obtain counterfactual vaccination rates and coverage, and estimated vaccine passports' impact on vaccination coverage (absolute) and new vaccinations (relative). Results: In both provinces, pre-announcement first-dose vaccination coverage was 82% ([≥]12 years). The announcement resulted in estimated increases in vaccination coverage of 0.9 percentage points (p.p.;95% CI: 0.4-1.2) in Quebec and 0.7 p.p. (95% CI: 0.5-0.8) in Ontario. In relative terms, these increases correspond to 23% (95% CI: 10-36%) and 19% (95% CI: 15-22%) more vaccinations. The impact was larger among people aged 12-39 (1-2 p.p.). There was little variability in the absolute impact by area-level income or proportion racialized in either province. Conclusions: In the context of high baseline vaccine coverage across two provinces, the announcement of vaccine passports led to a small impact on first-dose coverage, with little impact on reducing economic and racial inequities in vaccine coverage. Findings suggest the need for other policies to further increase vaccination coverage among lower-income and more racialized neighbourhoods and communities.


Subject(s)
COVID-19
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.17.22271099

ABSTRACT

Seroprevalence studies have been used throughout the COVID-19 pandemic to monitor infection and immunity. These studies are often reported in peer-reviewed journals, but the academic writing and publishing process can delay reporting and thereby public health action. Seroprevalence estimates have been reported faster in preprints and media, but with concerns about data quality. We aimed to (i) describe the timeliness of SARS-CoV-2 serosurveillance reporting by publication venue and study characteristics and (ii) identify relationships between timeliness, data validity, and representativeness to guide recommendations for serosurveillance efforts. We included seroprevalence studies published between January 1, 2020 and December 31, 2021 from the ongoing SeroTracker living systematic review. For each study, we calculated timeliness as the time elapsed between the end of sampling and the first public report. We evaluated data validity based on serological test performance and correction for sampling error, and representativeness based on use of a representative sample frame and adequate sample coverages. We examined how timeliness varied with study characteristics, representativeness, and data validity using univariate and multivariate Cox regression. We analyzed 1,844 studies. Median time to publication was 154 days (IQR 64-255), varying by publication venue (journal articles: 212 days, preprints: 101 days, institutional reports: 18 days, and media: 12 days). Multivariate analysis confirmed the relationship between timeliness and publication venue and showed that general population studies were published faster than special population or health care worker studies; there was no relationship between timeliness and study geographic scope, geographic region, representativeness, or serological test performance. Seroprevalence studies in peer-reviewed articles and preprints are published slowly, highlighting the limitations of using the academic literature to report seroprevalence during a health crisis. More timely reporting of seroprevalence estimates can improve their usefulness for surveillance, enabling more effective responses during health emergencies.


Subject(s)
COVID-19 , Learning Disabilities , Communicable Diseases
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.14.22270934

ABSTRACT

IntroductionEstimating COVID-19 cumulative incidence in Africa remains problematic due to challenges in contact tracing, routine surveillance systems and laboratory testing capacities and strategies. We undertook a meta-analysis of population-based seroprevalence studies to estimate SARS-CoV-2 seroprevalence in Africa to inform evidence-based decision making on Public Health and Social Measures (PHSM) and vaccine strategy. MethodsWe searched for seroprevalence studies conducted in Africa published 01-01-2020 to 30-12-2021 in Medline, Embase, Web of Science, and Europe PMC (preprints), grey literature, media releases and early results from WHO Unity studies. All studies were screened, extracted, assessed for risk of bias and evaluated for alignment with the WHO Unity protocol for seroepidemiological investigations. We conducted descriptive analyses of seroprevalence and meta-analysed seroprevalence differences by demographic groups, place and time. We estimated the extent of undetected infections by comparing seroprevalence and cumulative incidence of confirmed cases reported to WHO. PROSPERO: CRD42020183634. ResultsWe identified 54 full texts or early results, reporting 151 distinct seroprevalence studies in Africa Of these, 95 (63%) were low/moderate risk of bias studies. SARS-CoV-2 seroprevalence rose from 3.0% [95% CI: 1.0-9.2%] in Q2 2020 to 65.1% [95% CI: 56.3-73.0%] in Q3 2021. The ratios of seroprevalence from infection to cumulative incidence of confirmed cases was large (overall: 97:1, ranging from 10:1 to 958:1) and steady over time. Seroprevalence was highly heterogeneous both within countries - urban vs. rural (lower seroprevalence for rural geographic areas), children vs. adults (children aged 0-9 years had the lowest seroprevalence) - and between countries and African sub-regions (Middle, Western and Eastern Africa associated with higher seroprevalence). ConclusionWe report high seroprevalence in Africa suggesting greater population exposure to SARS-CoV-2 and protection against COVID-19 disease than indicated by surveillance data. As seroprevalence was heterogeneous, targeted PHSM and vaccination strategies need to be tailored to local epidemiological situations.


Subject(s)
COVID-19
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.14.21267791

ABSTRACT

Background COVID-19 case data underestimates infection and immunity, especially in low- and middle-income countries (LMICs). We meta-analyzed standardized SARS-CoV-2 seroprevalence studies to estimate global seroprevalence. Objectives/Methods We conducted a systematic review and meta-analysis, searching MEDLINE, Embase, Web of Science, preprints, and grey literature for SARS-CoV-2 seroprevalence studies aligned with the WHO UNITY protocol published between 2020-01-01 and 2021-10-29. Eligible studies were extracted and critically appraised in duplicate. We meta-analyzed seroprevalence by country and month, pooling to estimate regional and global seroprevalence over time; compared seroprevalence from infection to confirmed cases to estimate under-ascertainment; meta-analyzed differences in seroprevalence between demographic subgroups; and identified national factors associated with seroprevalence using meta-regression. PROSPERO: CRD42020183634. Results We identified 396 full texts reporting 736 distinct seroprevalence studies (41% LMIC), including 355 low/moderate risk of bias studies with national/sub-national scope in further analysis. By April 2021, global SARS-CoV-2 seroprevalence was 26.1%, 95% CI [24.6-27.6%]. Seroprevalence rose steeply in the first half of 2021 due to infection in some regions (e.g., 18.2% to 45.9% in Africa) and vaccination and infection in others (e.g., 11.3% to 57.4% in the Americas high-income countries), but remained low in others (e.g., 0.3% to 1.6% in the Western Pacific). In 2021 Q1, median seroprevalence to case ratios were 1.9:1 in HICs and 61.9:1 in LMICs. Children 0-9 years and adults 60+ were at lower risk of seropositivity than adults 20-29. In a multivariate model using data pre-vaccination, more stringent public health and social measures were associated with lower seroprevalence. Conclusions Global seroprevalence has risen considerably over time and with regional variation, however much of the global population remains susceptible to SARS-CoV-2 infection. True infections far exceed reported COVID-19 cases. Standardized seroprevalence studies are essential to inform COVID-19 control measures, particularly in resource-limited regions.


Subject(s)
COVID-19
6.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3947387

ABSTRACT

Background: Many studies have examined the effectiveness of non-pharmaceutical interventions (NPIs) on SARS-CoV-2 transmission worldwide. However, less attention has been devoted to understanding the limits of NPIs across the course of the pandemic and along a continuum of their stringency. In this study, we explore the relationship between the growth of SARS-CoV-2 cases and a stringency index across Canada prior to accelerated vaccine roll-out.Methods: We conducted an ecological time-series study of daily SARS-CoV-2 case growth in Canada from February 2020 to February 2021. Our outcome was a back-projected version of the daily growth ratio in a stringency period (i.e., a 10-point range of the stringency index) relative to the last day of the previous period. We examined the trends in case growth using a linear mixed effects model accounting for stringency period, province, and mobility in public domains.Results: Case growth declined, rapidly, by 37–50% and began plateauing within the first two weeks of the first wave, irrespective of the starting values of the stringency index. Across individual stringency periods, there was a lag of 11·3 days, on average, to observe the largest cumulative decline in relative growth. The largest decreasing trends from our mixed effects model occurred over the first stringency period in each province, at a mean index value of 25·2 out of 100.Conclusions: There was a negative correlation between NPI stringency and growth of SARS-CoV-2 that attenuated throughout the course of Canada’s epidemic. We suggest that individual- and network-level risk factors need to guide the use of NPIs in future epidemics.


Subject(s)
Intestinal Polyposis
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.17.21262188

ABSTRACT

There is a threat of COVID-19 resurgence in Fall 2021 in Canada. To understand the probability and severity of this threat, quantification of the level of immunity/protection of the population is required. We use an age-structured model including infection, vaccination and waning immunity to estimate the distribution of immunity to COVID-19 in the Canadian population. By late Summer 2021, coinciding with the end of the vaccination program, we estimate that 60 - 80% of the Canadian population will have some immunity to COVID-19. Model results show that this level of immunity is not sufficient to stave off a Fall 2021 resurgence. The timing and severity of a resurgence, however, varies in magnitude given multiple factors: relaxation of non-pharmaceutical interventions such as social distancing, the rate of waning immunity, the transmissibility of variants of concern, and the protective characteristics of the vaccines against infection and severe disease. To prevent large-scale resurgence, booster vaccination and/or re-introduction of public health mitigation may be needed.


Subject(s)
COVID-19
8.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.10.21257749

ABSTRACT

The COVID-19 global pandemic has highlighted the importance of non-pharmacological interventions (NPI) for controlling epidemics of emerging infectious diseases. Despite the importance of NPI, their implementation has been monitored in an ad hoc and uncoordinated manner, mainly through the manual efforts of volunteers. Given the absence of systematic NPI tracking, authorities and researchers are limited in their ability to quantify the effectiveness of NPI and guide decisions regarding their use during the progression of a global pandemic. To address this issue, we propose 3-stage machine learning framework called EpiTopics to facilitate the surveillance of NPI by mining the vast amount of unlabelled news reports about these interventions. Building on topic modeling, our method characterizes online government reports and media articles related to COVID-19 as a mixture of latent topics. Our key contribution is the use of transfer-learning to address the limited number of NPI-labelled documents and topic modelling to support interpretation of the results. At stage 1, we trained a modified version of the unsupervised dynamic embedded topic model (DETM) on 1.2 million international news reports related to COVID-19. At stage 2, we used the trained DETM to infer topic mixture from a small set of 2000 NPI-labelled WHO documents as the input features for predicting NPI labels on each document. At stage 3, we supply the inferred country-level temporal topics from the DETM to the pretrained document-level NPI classifier to predict country-level NPIs. We identified 25 interpretable topics, over 4 distinct and coherent COVID-related themes. These topics contributed to significant improvements in predicting the NPIs labelled in the WHO documents and in predicting country-level NPIs. Together, our work lay the machine learning methodological foundation for future research in global-scale surveillance of public health interventions. The EpiTopics code is available at GitHub: https://github.com/li-lab-mcgill/covid-npi.


Subject(s)
COVID-19 , Communicable Diseases, Emerging
9.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2010.16004v1

ABSTRACT

The rapid global spread of COVID-19 has led to an unprecedented demand for effective methods to mitigate the spread of the disease, and various digital contact tracing (DCT) methods have emerged as a component of the solution. In order to make informed public health choices, there is a need for tools which allow evaluation and comparison of DCT methods. We introduce an agent-based compartmental simulator we call COVI-AgentSim, integrating detailed consideration of virology, disease progression, social contact networks, and mobility patterns, based on parameters derived from empirical research. We verify by comparing to real data that COVI-AgentSim is able to reproduce realistic COVID-19 spread dynamics, and perform a sensitivity analysis to verify that the relative performance of contact tracing methods are consistent across a range of settings. We use COVI-AgentSim to perform cost-benefit analyses comparing no DCT to: 1) standard binary contact tracing (BCT) that assigns binary recommendations based on binary test results; and 2) a rule-based method for feature-based contact tracing (FCT) that assigns a graded level of recommendation based on diverse individual features. We find all DCT methods consistently reduce the spread of the disease, and that the advantage of FCT over BCT is maintained over a wide range of adoption rates. Feature-based methods of contact tracing avert more disability-adjusted life years (DALYs) per socioeconomic cost (measured by productive hours lost). Our results suggest any DCT method can help save lives, support re-opening of economies, and prevent second-wave outbreaks, and that FCT methods are a promising direction for enriching BCT using self-reported symptoms, yielding earlier warning signals and a significantly reduced spread of the virus per socioeconomic cost.


Subject(s)
COVID-19
10.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2010.12536v1

ABSTRACT

The COVID-19 pandemic has spread rapidly worldwide, overwhelming manual contact tracing in many countries and resulting in widespread lockdowns for emergency containment. Large-scale digital contact tracing (DCT) has emerged as a potential solution to resume economic and social activity while minimizing spread of the virus. Various DCT methods have been proposed, each making trade-offs between privacy, mobility restrictions, and public health. The most common approach, binary contact tracing (BCT), models infection as a binary event, informed only by an individual's test results, with corresponding binary recommendations that either all or none of the individual's contacts quarantine. BCT ignores the inherent uncertainty in contacts and the infection process, which could be used to tailor messaging to high-risk individuals, and prompt proactive testing or earlier warnings. It also does not make use of observations such as symptoms or pre-existing medical conditions, which could be used to make more accurate infectiousness predictions. In this paper, we use a recently-proposed COVID-19 epidemiological simulator to develop and test methods that can be deployed to a smartphone to locally and proactively predict an individual's infectiousness (risk of infecting others) based on their contact history and other information, while respecting strong privacy constraints. Predictions are used to provide personalized recommendations to the individual via an app, as well as to send anonymized messages to the individual's contacts, who use this information to better predict their own infectiousness, an approach we call proactive contact tracing (PCT). We find a deep-learning based PCT method which improves over BCT for equivalent average mobility, suggesting PCT could help in safe re-opening and second-wave prevention.


Subject(s)
COVID-19 , Auditory Perceptual Disorders
SELECTION OF CITATIONS
SEARCH DETAIL